Bootstrappers: Python 2, Session 4

February 12, 2015 by Chris MacKay with Mike Purcaro & the GSBS Bootstrappers

contact: christopher.mackay @umassmed.edu

Outline

This lesson we will be using bioinformatics problems from the Rosalind website to illustrate some concepts in
object-oriented programming

¢ Rosalind Problems:
o more on classes and methods
o briefly go over module and package basics Link
o using basic command line arguments Link

Rosalind Problems:

these are the problems we will go over, in this order:

DNA Counting DNA Nucleotides

RNA Transcribing DNA into RNA

REVC Complementing a Strand of DNA
GC Computing GC Content

HAMM Counting Point Mutations

PROT Translating RNA into Protein
SPLC RNA Splicing

SUBS Finding a Motif in DNA

PRTM Calculating Protein Mass

REVP Locating Restriction Sites

© © ® N O D=

—

Problem 1: DN

http://bioinfo.umassmed.edu/bootstrappers/
mailto:christopher.mackay@umassmed.edu
http://rosalind.info/
https://docs.python.org/2/tutorial/modules.html
http://www.tutorialspoint.com/python/python_command_line_arguments.htm
http://rosalind.info/problems/dna/

e Given: A DNA string s of length at most 1000 nt.

e Return: Four integers (separated by spaces) counting the respective number of times that the symbols ‘A,
‘C’, ‘G’, and 'T' occur in s.

Try this:

e solve the problem with a DNASequence class, with a method that returns a count of all bases
e what if your DNA sequence has "N" s?

Possible Solution:

from collections import defaultdict

class DNASequence(object
def init_ (self, sequence
self.sequence = sequence

def countBases(self
count_dict = defaultdict(int
for base in self.sequence

count dict|[base] += 1
return count_dict

put sequence from rosalind here:
raw_sequence = ‘AGCTAGCTAGATCG'

my_ DNASeq_object = DNASequence(raw_sequence
my_count = my_DNASeq_object.countBases

to get the output Rosalind asks for:

print ' join([my_count| A’ my_count|[‘C’ my_count|[‘G’ my_count|[T’

Notes on the above solution:

defaultdict

This is a subclass of the standard python dictionary that does not give you an error if your key does not already
exist in the dictionary. defaultdict canbe foundinthe collections package, which comes standard

https://docs.python.org/2/library/collections.html#collections.defaultdict

with every python installation. For this reason we need to import it form collections using

from collections import defaultdict .

When using a defaultdict dictionary, if you ask python for my dict[my key] anditis notinthe
dictionary, defaultdict returns the zero value for the type the dictionary was created for:

a defaultdict(int) returnsa 0

a defaultdict(str) returns anempty string "'

a deafultdict(list) returnsanemptylist []
e efc...

why are we using a class?

You might be asking, why are we using a class here, when you could more quickly get an answer without it...

Once the class is set up, you can see that it takes two simple and very straight forward lines of code to go from
the raw sequence to having a count of all the bases in that sequences.

Hopefully the benefits of classes and objects will become more obvious as we continue...

Problem 2: RNA

e Given: A DNA string t having length at most 1000 nt.
e Return: The transcribed RNA string of .
Try this:

e how about adding a new method to your DNASequence class that returns an RNA version of the DNA
sequence?

Possible Solution:

appending our code from above:

http://rosalind.info/problems/rna

class DNASequence(object
def init_ (self, sequence
self.sequence = sequence
def countBases(self
count_dict = defaultdict(int
for base in self.sequence
count dict[base] += 1
return count_dict
def transcribe(self
rna = self.sequence.replace('T"," U’

return rna

put sequence from rosalind here:
raw_sequence = ‘AGCTAGCTAGATCG'

my_ DNASeq_object = DNASequence(raw_sequence
my_RNA_string = my_DNASeq_object.transcribe

print my_RNA_string

Notes on the above solution:

string.replace(old substring, new substring)

Here we use a built-in function of strings called replace()
can help you to discover this technique: here you go

Problem 3: REVC

e Given: A DNA string s of length at most 1000 bp.
e Return: The reverse complement s¢ of s.

Try this:

. A simple google search python string replace

e how about adding a new method to your DNASequence class?

Possible Solution:

https://www.google.com/#q=python+string+replace
http://rosalind.info/problems/revc/

appending our code from above by adding a reverseComplement functiontothe DNASequence
class...

class DNASequence(object
def _init_ (self, sequence
self.sequence = sequence

def countBases(self
count_dict = defaultdict(int
for base in self.sequence
count _dict|[base]| += 1
return count_dict

def transcribe(self
rna = self.sequence.replace('T',"U’
return rna

def reverseComplement(self
watson_crick = {"A":'T', 'C':'G", 'G':'C", '"T':'A"

complement =
for base in self.sequence

complement += watson_crick|[base
rev_complement = complement -1
return rev_complement

put sequence from rosalind here:
raw_sequence = ‘AGCTAGCTAGATCG'

my_DNASeq_object = DNASequence(raw_sequence
my_rev_comp = my_DNASeq_object.reverseComplement

print my_rev_comp

Notes on the above solution:

Here we create a dictionary based on Waston-Crick basepairing, allowing us to use one base as a key and
return its complement as the value.

Additionally we use the pythonidiom 1list[::-1] to reverse the list.

Problem 4: GC

e Given: At most 10 DNA strings in FASTA format (of length at most 1 kbp each).

e Return: The ID of the string having the highest GC-content, followed by the GC-content of that string on
the next line.

Try this:

e trycreatinga FASTAFile class with a method that returns a DNASequence object for each
sequence in the file
e how about adding a new method to your DNASequence class that calculates the GC content?

Possible Solution

Here we add a FASTAFile class to our code and a function to the DNASequence class that returns the
GC percentage...

from collections import defaultdict

class DNASequence(object
def init_ (self, sequence, id
self.sequence = sequence

def countBases(self
count_dict = defaultdict(int
for base in self.sequence
count _dict|[base]| += 1
return count_dict

def transcribe(self
rna = self.sequence.replace('T',"'U’
return rna

def reverseComplement(self
watson_crick = {"A":'T', 'C':'G", 'G':'C", '"T':'A"
complement = "'
for base in self.sequence
complement += watson_crick|[base
rev_complement = complement -1
return rev_complement

def GCContent(self

http://rosalind.info/problems/gc/

counts = self.count

gc = counts|'G' |+counts|['C’

gc_percent = float(gc)/len(self.sequence
return gc_percent

class FASTAFile(object
def init_ (self, path
self.path = path

def sequences(self
found_sequences =
with open(self.path, 'r') as input

sequence =
for i, line in enumerate(input
i i B2

] [

id = line.rstrip('\n").lstrip('>

else

if line.startswith('>

new_sequence_object = DNASequence(sequence
found_sequences.append(new_sequence_object

sequence =
id = line.rstrip('\n').1lstrip

>
else
sequence += line.rstrip('\n’
else
new_sequence_object = DNASequence(sequence
found_sequences.append(new_sequence_object
return found_sequences
path = '/path/to/your/fasta/file.fasta’
my_sequences = FASTAFile(path).sequences
my_sequences.sort(key = lambda x: x.GCContent reverse =

top_GC = my_sequences|©

print top_GC.id
print top_GC.GCContent

Notes on the above solution:

id

True

id

Parsing the FASTA file

FASTA files are annoying because each sequence starts with a > , but then can continue for a unspecified
number of lines before ending.

There are a number of ways you could address this and the approach above, is just one (somewhat
convoluted) example.

While going line by line through a FASTAfile, if a > is found, that line is stripped ofthe > and '\n' and
stored as the current id . The following lines are then sequentially added to the growing sequence string.

If anew > isfound, this indicates that the previous sequence has ended, and a new sequence is starting.
Therefore the previous sequence and id is recorded in the form of a DNASequence object which is then
appended onto the found sequences list. Once the previous sequence is added to found sequences
the id for the next sequences is saved as id , and the sequence variable is reset to an empty string

('")sothatitis ready to receive the subsequent lines of sequence.

Using this approach there are two scenarios when encountering a > cannot be used to trigger creating and
storing the previous sequence as a DNASequence :

1. at the beginning of the file

At the beginning of the file there is no previous sequence, so trying to store the previous sequence results in an
empty DNASequence object.

In order to address this, | set up a special case where on the first line of the file, | don’t trigger the creating and
storing of a DNASequence object. Instead i just save the first line asan id and move on.

Todothislused for i, line in enumerate(file) .Whenyouusea for loop over an iterable
item (list, string, etc.) you get each element in that item returned to you during each loop.

By using enumerate(thing) you geteach item, but you also get the index of each item. See the example
below:

>>> test = ['this', 'is', 'a', 'test', 'list'
>>> for element in enumerate(test
print element

0, 'this’
1, 'is’
2, 'a’
3, 'test'
4, 'list’

each element is a tuple containing the index (position) of the item in
the list and then the item itself

you can *unpack* these two elements by giving python two variable names
(i and item) to assign to each tuple. Python can figure it out from there.

>>> for i, item in enumerate(test
print i
print item

this

is

test

list

2. at the end of the file

At the end of the file there is no next > to trigger creating and storing the last sequence. For this reason we
have added a else clause thatis connected to our for loop.

for...else is away of executing code once the for loop iteration is over. Once the for loopis
complete, whatever is inthe else statementis then executed, and then the loop is over.

This method of linking an action to the termination of the for loop with else helps to keep clear (to you
and anyone else who might read your code) that these two pieces of code are linked together, and are
considered part of the same loop structure.

Sorting Lists

At the end of the above solution we have our list of DNASequence objects (stored as my sequences)
and we then need to find which sequence in this list has the highest GC content, so that we can return the
correct answer to Rosalind.

One way to do this is to sort this list, from highest to lowest, and then use the zeroth sequence.

There are at least two ways to sort a list:

1. Sorting a list with sorted(list)

sorted(list) creates a newly sorted list and leaves the old list intact.

my_list = [67, 81, 24, 100]
test = sorted(my_list)
print test # [24, 67, 81, 100]

you can set reverse equal to True, to reverse the order of the list
test = sorted(my_list, reverse = True)
print test # [100, 81, 67, 24]

you can even define your own function to arrive at a key for each item in the list
here I have a function that uses the last digit of each item as the key

function to return the last digit:
def getKey(item):

string_item = str(item)

return int(string_item[-1])

#using the getKey function
test = sorted(my_list, key = getKey)
print test # [100, 81, 24, 67]

using an *anonymous* (ie lambda) function to do the same thing,
but with one line of code:

(here x is equivalent to item)

test = sorted(my_list, key = lambda x: int(str(x)[-1]))
print test # [100, 81, 24, 67]

2. Sorting a list with list.sort()

https://docs.python.org/2/library/functions.html#sorted
https://docs.python.org/2/howto/sorting.html

list.sort() sortsthe listin place with out creating a new list (NO NEW LIST IS MADE).

my_list = [67, 81, 24, 100
my list.sort
print my_list # [24, 67, 81, 100]

my list.sort(reverse = True
print my_list # [100, 81, 67, 24]

def getKey(item
string item = str(item

return int(string_item|-1

my list.sort(key = getKey
print my_list # [100, 81, 24, 67]

my_list.sort(key = lambda x: int(str(x)[-1

print my_list # [100, 81, 24, 67]

TO BE CONTINUED...

Problem 5: HAMM

e Given: Two DNA strings s and ¢ of equal length (not exceeding 1 kbp).
e Return: The Hamming distance dy (s, ?).
Try this:

e add another method to your DNASequence class

Adding default attributes to classes and using keyword
arguments

http://rosalind.info/problems/hamm/

class Gene(DNASequence
def init_ (self, sequence, id = None
self.sequence = sequence
self.id = id

this sequence will have a self.id equal to None
new_sequence = DNASequence('ATCGCTAGAGCT'

if you don't want to keep remembering which order the arguments need to be in,

just use the argument keywords and equal signs:

next_sequence = DNASequence(id = 'seq 35452
sequence = 'TGCTAGCTGAATCA'

Problem 6: PROT

e Given: An RNA string s corresponding to a strand of mMRNA (of length at most 10 kbp).
e Return: The protein string encoded by s. of that string on the next line.
e HELP: codon table

Try this:

e create anew RNASequence class that has a method translate()

Problem 7: SPLC

e Given: A DNA string s (of length at most 1 kbp) and a collection of substrings of s acting as introns. All
strings are given in FASTA format.

e Return: A protein string resulting from transcribing and translating the exons of s. (Note: Only one solution
will exist for the dataset provided.)

Try this:

e use your FASTAFile class
e could you create a method of the DNASequence class called splice(introns) thattakes a list of

DNASequence oObjects as an argument?

file:///Users/christophermackay/Desktop/Coding/bootstrappers-courses/python2/lecture4/resources/codon_table.txt
http://rosalind.info/problems/prot/
http://rosalind.info/problems/SPLC/

o eg: def splice(self, introns):...

e could you slightly modify your RNASequence.translate() method from Problem 6 and apply it to
this DNASequence ?

Problem 8: SUBS

e Given: Two DNA strings s and ¢ (each of length at most 1 kbp).

e Return: All locations of ¢ as a substring of s.
NOTE:

¢ python uses 0-based counting, but is that what Rosalind is looking for?
Try this:

e adding a new method to your DNASequence class

Problem 9: PRTM

e Given: A protein string P of length at most 1000 aa.

e Return: The total weight of P. Consult the monoisotopic mass table.

Try This:

e try creating a protein class, and a mass() method.

tangent on Modules...

Say you have a function called reverseComplement ina myCode.py file which is in the same directory
as this script.

You could import your code from myCode.py , and access each class or function or global variable in
myCode.py by using the convention myCode.name of item you want

Here is an example:

file:///Users/christophermackay/Desktop/Coding/bootstrappers-courses/python2/lecture4/resources/monoisotopic.txt
http://rosalind.info/problems/SUBS/
http://rosalind.info/problems/PRTM/

import myCode
new_rev_comp = myCode.reverseComplement(sequence

Additionally, if myCode is too long or cumbersome for you, you can reassign it a new value like so:

import myCode as my
new_rev_comp = my.reverseComplement(sequence

If you don’t need every function, class, and variable found in myCode.py Yyou can explicitly import the thing
you want, in which case you don’t need to put myCode in front of it to use it. This is useful in that it tells
readers of your code explicitly which parts of other documents you will be using:

from myCode import reverseComplement
new_rev_comp = reverseComplement(sequence

Finally, you can combine the direct call of a piece of code from a file, with the name reassignment to get a
streamlined name:

from myCode import reverseComplement as rc
new_rev_comp = rc(sequence

to read more on modules and packages go here

Problem 10: REVP

e Given: Given: A DNA string of length at most 1 kbp in FASTA format.

e Return: The position and length of every reverse palindrome in the string having length between 4 and 12.
You may return these pairs in any order.

Try this:

¢ try to call in some of your previously written classes and functions from another .py file...

https://docs.python.org/2/tutorial/modules.html
http://rosalind.info/problems/REVP/

